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CONTINUOUS SEPARATION TECHNIQUES IN FLOW INJECTION
ANALYSIS

A REVIEW

MIGUEL VALCARCEL* and M. DOLORES LUQUE DE CASTRO
Department of Analytical Chemistry, Faculty of Sciences, University of Cordoba, Cordoba ( Spain)

SUMMARY

After establishing the basic similarities and differences between flow injection
analysis (FIA) and high-performance liquid chromatography (HPLC), the objectives
pursued with the formation of different types of interfaces in FIA are discussed:
pre-concentration, sample clean-up, etc., to improve or facilitate the analytical re-
action and/or detection. The types of interfaces most commonly employed in FIA
systems are gas-liquid (gas diffusion, distillation, hydride generation), liquid-liquid
(extraction, dialysis) and liquid—solid (ion exchange, adsorption, precipitation, dis-
solution, stripping). The general features of the methods proposed in each of these
alternatives are critically discussed, and some representative examples are described.
Special emphasis is given to the on-line coupling of HPLC and FIA, showing the
potential of this association. Finally, the advantages involved in the joint use of
separation units built in unsegmented continuous flow systems and the prospects for
this association are discussed.

INTRODUCTION

Nowadays, high-performance liquid chromatography (HPLC), flow injection
analysis (FIA) and field flow fractionation (FFF) are commonly used hydrodynamic
systems in analytical chemistry. If the instrumental schematic diagrams of HPLC
and FIA are compared, it can readily be concluded that there is a remarkable simi-
larity between them: they have important common components such as liquid res-
ervoirs, pump(s), injectors and continuous detection systems. Nevertheless, there are
also significant differences, such as working pressure, interface occurrence, versatility,
type of analytical problems dealt with, costs, etc. However, the greatest difference is
the continuous separation performed in the chromatographic column, which is es-
sential in HPLC and only occasionally needed in FIA (used in about 10% of the
papers published so far!:2,

The formation of interfaces in FIA systems can have two main objectives. On
the one hand, it can be used to develop continuous separation processes to improve
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those performed conventionally (liquid-liquid extraction, ion exchange, adsorption,
etc.). These separation processes carried out in unsegmented flow configurations are
intermediate (both kinetically and thermodynamically) between batch methods in
which equilibrium is reached once or several times and chromatographic methods in
which equilibrium is reached many times.

On the other hand, the formation of different interfaces in FIA systems can be
aimed at non-separative applications, e.g., to improve or facilitate the analytical de-
termination. In this instance, advantage is taken of the chemical reaction between a
solid phase and a liquid phase which flows through it. Thus, redox columns have
been used to handle reagents sensitive to atmospheric agents® or to perform multiple
determinations (e.g., NO; and NO;)*. The use of immobilized enzymes in packed
columns or in wall tubes is a very interesting alternative’. Voltammetric and poten-
tiometric stripping techniques performed in a continuous fashion can also be included
in this context because they pursue the two above-mentioned objectives in their two
basic steps: pre-concentration and determination® 8,

The different interfaces employed in FIA systems and the corresponding con-
tinuous separation techniques used are summarized in Table I. A general and brief
description of each is given below. Special importance is given to the coupling of an
FIA system with a liquid chromatograph. Finally, the purposes and advantages of
the incorporation of non-chromatographic separation techniques into unsegmented
flow configurations is critically discussed.

GAS-LIQUID INTERFACES

The gas-liquid separation systems used in FIA can be classified into three
groups: (a) gas diffusion, in which a gas present in a donor liquid phase or formed
by chemical reaction diffuses to. the other phase (also a liquid, which acts as an
acceptor); (b) distillation, in which the gas phase is formed by heating, condensation
at a suitable temperature and collection into a second liquid phase; (c) Aydride gen-
eration, in which the gas phase is formed in a chemical reaction and the second one
is a gas that transports the sample to the detection system.

TABLE1
CONTINUOUS SEPARATION TECHNIQUES IN FLOW INJECTION CONFIGURATIONS

Interface Separation technigue
Gas-liquid Gas diffusion
Distillation
Hydride generation
Gas-solid
Liquid-liquid Extraction
Dialysis
Liquid—solid Ion exchange
: Adsorption

Precipitation
Others
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Gas diffusion

The transfer of a gas between two donor streams has scarcely been used in
FIA, although it is applicable to a wide variety of analytes, matrices and detection
systems (see Table II).

The analyte constituting the gas phase can be present as gas in the donors (O,
Q,, Cly) or can be formed in it by simple chemical reaction induced by an acid
(formation of SO, or HCN) or a base (formation of NH3), or may require the aid
of relatively high temperatures (formation of acetone from oxidized ketone bodies).
Photometry has been the most frequently utilized detection system on account of its
suitability for analytes with acid—base properties, which usually diffuse to solutions
containing an indicator, whose colour change is a function of the amount of analyte
diffused.

Generally, phase separation is isothermal and occurs through a suitable mem-
brane (usually PTFE). Sometimes there is no separation membrane, but this is pro-
duced between two parallel rubber sheets supported by Perspex plates. The stream
containing the sample spreads throughout the lower sheet, yielding a film that trav-
erses the entire length of the rubber before going to waste. During the transport, the
species of interest evaporates and the gas diffuses through the space between the two
sheets, being collected in the acceptor stream®.

The analytical purpose generally in pursued combined FIA—gas diffusion is
removal of interferences in complex matrices (biological liquids, foods, vegetable
tissues, etc.); nevertheless, enhanced selectivity and increased sensitivity can be
achieved by incorporating kinetic discrimination and/or kinetic enhacement into the
timing of the system or the reagent concentrations and conditions for a given method,
as demonstrated by Pacey ef al.!? in the sequential determination of ozone, chlorine
dioxide and chiorite and chlorate.

Fig. 1 shows the gas diffusion system used for the determination of ammonia
in blood proposed by Svensson and Anfélt!l, in which the sample is injected into a
distilled water stream which merges with 0.5 M sodium hydroxide solution, con-
verting NH{ to NHs, which diffuses through the PTFE membrane to a stream of
phenol red in 10 M sodium hydroxide solution, subsequently being monitored at 540
nm (Table 11'2721),

Distillation

There is only one paper in the FIA literature in which distillation is used with
the basic purpose of eliminating the interferents present in a complex matrix, such
as waste water for cyanide determination. The method, proposed by Pihlar and Kos-
ta??, involves the use of a distillation system consisting of a distillation and an ab-
sorption unit. The former (borosilicate glass, half-packed with glass helices and
wrapped with a heating wire) is entered by the nitrogen stream at the bottom of the
distillation column and by a hydrogen cyanide carrier through the condenser into the
absorption unit. A 0.1 M solution of sodium hydroxide is pumped to the top of the
absorption column. A debubbler unit prior to the voltammetric detector removes the
gas from the system. Differentiation between total and strongly bound metal cyanide
complexes is achieved by UV decomposition of the complexes.
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Module holder
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Sodium hydroxide 0.35mi /min !
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|
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Fig. 1. Schematic diagram of set-up for the determination of ammonia in blood involving a gas-diffusion
system (from ref. 11).

Hydride generation

Hydride generation is a “sui generis” example of gas-liquid separation systems
requiring a chemical agent (usually sodium borohydride) yielding a volatile com-
pound, which is separated from the solution by a gas (second phase) transporting the
analyte to an atomic optical detector. The analytical purpose is usually removal of
interferences?3 28 and occasionally the performance of speciation studies by exploiting
the different rates of formation of hydrides of the different chemical forms in which
the analyte occurs?® (Table II).

GAS-SOLID INTERFACES

There are few methods involving gas—solid interfaces in general and only a
direct determinative method for chlorine and bromine in FIA2°, based on the tran-
sient signal resulting from two consecutive reactions at a gas—solid interface. The
method involves no separation processes.

LIQUID-LIQUID INTERFACES

Separation techniques involving this type of phase have been used to different
extents in FIA. Thus, extraction has been utilized relatively frequently3®, whereas
dialysis has rarely been adopted. Table ITI summarizes the most important features
of the different FIA methods proposed with both types of separation techniques,
which are commented on separately below.

Extraction

The on-line coupling of a liquid-liquid extraction system to an FIA configu-
ration was simultaneously proposed by Karlberg and Thelander®! and Bergamin et
al.3?. In both instances, the extraction system was located behind the injection valve.
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Currently, this separation unit can be placed either its original position or prior to
the injection system, in a such manner that the separation process results in a con-
tinuous stream of organic phase containing the analyte, which fills the loop of the
injection valve33:34. As a result of this coupling, configurations of varying complexity
according to the particular needs are now available. The following types can be
distinguished: (1) without phase separation, which is the simplest mode and in which
the aqueous sample is injected into a single-channel configuration enclosing the or-
ganic stream extractant, which flows through the extraction coil; this is where the
formation of an extractable complex between the analyte and the reagent dissolved
in the organic phase, which is measured as it passes through the flow cell3s, takes
place; (2) single extraction, with the separation system located prior to or after the
injection unit; (3) multiple extraction, in which the separation process is repeated
several times by using the same or a different extractant in the successive stages*%-37;
(4) back-extraction, which is a multi-stage extraction mode in which the aqueous
sample is first extracted into an organic medium and then back-extracted into an
aqueous phase, where measurements are performed3®.

The presence of an organic phase within an FIA system requires special pre-
cautions because of its dissolution properties. The transport tubing, connectors and
extraction system must be made of steel, platinum, glass or PTFE. An organic solvent
stream can be created (a) by a peristaltic pump (the PVC flexible tubes commonly
used are useless, so that an inert material such as modified PVC, silicone rubber or
fluorplast has to be employed), (b) by the displacement technique, which involves
pumping an aqueous stream into a closed container (use of a peristaltic pump with
ordinary tubing); the container is filled with organic solvent, which is fed at a constant
flow-rate towards the FIA system; or (¢) by setting a constant pressure with the aid
of an inert gas, which forces the organic extract to circulate along the FIA config-
uration.

Every automatic solvent extraction FIA system has three essential components:
(a) a segmenter, in which the streams of the two phases involved merge and which
is intended to obtain identical alternate segments of both immiscible liquids attaining
the extraction coil; (b) an extraction coil, in which the transfer of matter between the
segments of both phases is carried out, and (c) a phase separator, which receives the
segmented flow from the coil and continuously splits it into two separate streams in
both phases. Of these three elements, the most complex and important is the phase
separator, of which several models have been designed with the aim of improving the
characteristics of these already available31-39-45,

The FIA-liquid extraction combination has contributed to the resolution of
analytical problems in several areas, especially in environmental, clinical and phar-
maceutical chemistry (see Table III), which in general have been devoted to the sep-
aration (and sometimes pre-concentration) of the analyte. The applications have been
systematized according to the type of analyte to be determined (inorganic or organic)
and, within each group, depending on the detection systems utilized.

Fig. 2 shows the two genéric types of FIA-liquid extraction arrangements:
with the extraction unit located (a) before or (b) after the injection system. Config-
uration (a) has been used for the speciation of nitrogen as nitrite—nitrate in meats.
The determination is sequential and is based on the formation of an ion pair between
the copper(I)-neocuproin complex and the nitrate ion. The determination of nitrite
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(a)
ml/min

Water

Water

Sample

Carrier

80cm  380em L 6 3mmid)
== Waste
(b)
Sample
. Mixing coil
Lumogallion — S Waste
reagent
Extraction
coit
Phase
separator

Isoamyl

aleohol

]
Pump

Waste

Fig. 2. General types of FIA-liquid-liquid extraction arrangements: (a) before the injection system (with
displacement bottle); (b) after the injection system.

requires its prior oxidation to nitrate with Ce'V4¢, A manifold such as that in Fig. 2b
has been designed for Imasaka er al.*! for the determination of galliun based on the
formation of a fluorescent complex with lumogallion, this complex being extracted
with isoamyl alcohol.

Combined extraction—-FIA has also been applied to non-analytical aspects,
such as the calculation of the extracted analyte fraction*’, the peak area*® and
height*” as a function of the flow-rate and other parameters characteristic of the
chemical system such as acidity constants based on the use of a dual-membrane phase
separator*®. The contributions in this area are still not very numerous, although a
greater development of these aspects aimed at the study of reaction mechanisms and
kinetics with the aid of laser-induced excitation*! or multi-extraction systems3%.37
and fast scan detectors?® can be predicted (Table I1I)50 98,

Dialysis

FIA-liquid-liquid separation by use of a suitable membrane has been almost
exclusively applied in the area of clinical analysis. The purpose of this separation
technique has usually been removal of interferences (only once has it been used as
a dilution method®®). Table III lists the main contributions of combined dialysis~
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FIA, among which the paper by Gorton and Ogren’° is a representative example.
They determined glucose and urea in serum using the corresponding immobilized
enzymes. A schematic diagram of the configuration used for-the determination of
urea is shown In Fig. 3. The sample is-injected into a donor buffer, which is driven
towards waste once the analyte has passed through-the membrane, from which it is
led by the acceptor (phosphate buffer, pH 6) to the tubing zone containing the reactor
packed with urease immobilized on controlled-pore glass. The detection system (am-
monia-selective electrode) requires the use of a basic stream merging with the main
channel after the enzymatic reactor to make the pH of sample plug adequate for the
release of the monitored product. The theoretical aspects of these separation tech-
niques in its association with unsegmented flow systems have been dealt with by
Bernhardsson et al.”! (Table 11172.82),

SOLID-LIQUID INTERFACES

Separation techniques. involving the presence of liquid and solid phases have
been used in conjunction with FIA almost from the beginning of this technique
(nearly exclusively ion exchange until very recently). More recent is the use of these
phases involving adsorptive processes, precipitation as a separation and pre-concen-
tration technique being the latest innovation in this area.

Ion exchange

Combined FIA—-ion exchange has been preferentially devoted to the pre-con-
centration of minor species in complex samples (industrial, rain and sea waters, sol-
dering smokes, biological fluids, etc.), although it has also been utilized as a sepa-
ration technique and to facilitate the determination of different analytes in the same
sample by then sequential elution after keeping them on a suitable active agent.
Taking into account that the analytes most frequertly determined are metal cations,
it is obvious that the commonest active agents used are chelating resins of different
types. Table IV shows the main species determined by methods involving the use of
FIA-ion exchange, classified according to the type of analyte: cationic species (in-
dividual and mixtures), anionic species and conjugate acid—base forms. A represen-
tative example of the versatility of combined FIA—ion exchange and its easy adap-
tation to the resolution of various problems is the paper by Olsen er al.®® on the
determination of heavy metals in sea water by atomic-absorption spectrometry with
their prior separation and concentration in a micro-column of chelating resin incor-
porated into three different FIA configurations of increasing complexity to overcome

Pump
Buffer O 1.00 'Diolyzer ,' w NH3EL

Buffer O 1.00 E reactor
ml /min |
Base O 0.30 l
ml fmin T L 4

Fig. 3. Configuration for determination of glucose in serum with sample dialysis (from ref. 70).
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the shortcomings successively encountered. The single-channel manifold used, fea-
turing two series of injection valves located prior to the column (Fig. 4a), is the
simplest alternative to implementing the pre-concentration step. The propelling sys-
tem involves gas pressure. The carrier, ammonium-acetate drives the sample injected
by valve I; to the micro-column threugh a coil and the by-pass of valve 1,, where
the analytes are retained. The second step is the injection of the eluent through valve
I,. The shortcomings of this-eonfiguration are the appearance of a pre-peak due to
~the sample matrix; disturbances arising from changes in the compactness of the resin
in changing from NH{ to H* and lack of homogenization between the sample and

N

P
@ ® ®
qlml /min) w qiml /min}
~ A
H0 1.5 im CH 100 ‘A H2 0 1.5
NH,OCOCH ;=2 M =2 Y NH,0C0CH 2
N\
HNO3 f‘f_ )A HNO3 =2l
(3) | N
B Tttt atenletastttabiss WX w
HNO; 3.0
¥
A
N S Yyt |
K0 ‘ [ﬂg AMAA l
l
|
A |
15 1 {
NI'-140COCH3 | :
30
Hzo ' -+ @—‘w
I
30 w 1_ |
mL fmin. -

Fig. 4. Fl1A=ion exchange configuration of increasing coinplexity: (1) single-channel manifold; (2) with
elution; (b) in the reverse direction of the retention (a); (3) automated manifold.
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carrier in the central zone of the sample bolus, which is very acidic and hinders the
retention step. These shortcomings are overcome by configuration (b), which uses a
merging point for the ammonium acetate stream and elutes the analytes in the reverse
direction of the retention by selecting valves whose purpose is illustrated in the figure.
The automation of the method is carried out by a manifold with a single injection
valve and a system with two pumps and a timer synchronizing the stop and start of
the pumps (start of pump 1 during the pre-concentration process and that of pump
2 during the elution). The sample matrix does not reach the detector in either instance
and the micro-column is regenerated in the elution step.

A new and spectacular contribution in this area is the combination of FIA and
ion exchange by the use of integrated microconduits®* (Table IV85-192),

Adsorptive pre-concentration

Two active agents have been used for the adsorptive pre-concentration of an
analyte in FIA: activated alumina and ¢electrode surfaces (carbon paste or platinum).
Adsorption on alumina has been used for the pre-concentration of the Cr' ion in
biological samples (urine) in its determination by inductively coupled plasma-atomic
emission spectroscopy’®?, and for the pre-concentration of oxy anions (arsenate,
borate, chromate, molybdate, phosphate, selenate, vanadate) with the same detection
system!%4, Pre-concentration on a carbon paste electrode prior to the voltammetric
determination of the analyte has been used for the analysis of drugs such as chlor-
promazine'®$ and doxorubicin!®® in urine samples. Finally, the pulsed amperometric
determination of electro inactive adsorbates, such as chloride and cyanide at platinum
electrodes®’, shows the potential association of FIA with this separation and pre-
concentration technique.

Precipitation

This technique, widely used in classical analytical chemistry, has scarcely been
automated owing to the intrinsic difficulties involved. Recently, our research team
has established automatic precipitation methods in unsegmented continuous config-
urations incorporating a filter to develop indirect atomic absorption determinations.
A schematic diagram of the two basic systems employed is shown in Fig. 5. The
simplest alternative (Fig. SA) is the injection of an anion (analyte) into a carrier of a
precipitating cation (reagent). The precipitate formed is retained in the filter and a
negative FIA peak is obtained. Another configuration involving the washing and
dissolution of the precipitate formed has been employed to improve the analytical
possibilities (Fig. 5B); a positive FIA peak is obtained in this instance. The perform-
ance of this continuous precipitation system has been tested with three types of pre-
cipitates: gelatinous [iron(I1I) hydroxide], curdy (silver chloride) and crystalline (cal-
cium oxalate)!°%. The determination of chloride in different types of waters!?® and
chloride—iodide mixtures in foodstuffs!1® has been satisfactorily carried out by this
novel methodology.

HPLC-FIA COUPLING

The state of the art of on-line post-column reaction detectors in HPLC has
recently been reviewed by Frei er al.1!1. One of the shortcomings of this configuration
indicated in this interesting paper is the need for the post-column addition of re-
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Fig. 5. (A) Precipitation system and (B) precipitation-redissolution in a non-segmented flow configuration.

agents. The incorporation of the reagent can be performed in three different manners:
(a) through a constant stream of it, which is mixed with the effluent from the chro-
matographic column; (b) through its injection into a carrier mixing with the effluent;
and (c) by means of solid-phase reactors into which the reagent, generally a catalyst,
is immobilized. An additional pump is needed in the first two alternatives to establish
the reagent or carrier flow. Strictly, only when there is a complementary post-column
injection can an FIA system coupled to a liquid chromatograph be considered. There
are other possibilities of post-column pumpless reaction units (electrochemical, pho-
tochemical, thermal reactors, etc.) in addition to solid-phase reactors.

The basic components of an HPLC-FIA coupled system are two injection
valves, two pumps, a chromatographic column, a reactor, and a continuous detector,
in addition to the reservoirs of the eluent(s), carrier(s) and reagent(s). There are two
manners of implementing this association depending on the situation of the injection
valve of the FIA subsystem (see Fig. 6): (A) when,it is located before the confluence
of the carrier with the chromatographic effluent and (B) when the valve is at the
confluence point itself. Restrictor coils are frequently employed to prevent the for-
mation of air bubbles. There are few analytical methodologies based on these two
modes.

Several FIA systems in which the injection can be alternatively substituted by
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a confluence with the chromatographic effluent have been described. The total con-
centration of analytes is determined by means of the FIA system injecting the sample
through the FIA valve, whereas the discrimination between analytes (multiple deter-
mination) can be performed by incorporating the effluent in the post-column system
which operates without an injection valve and thus acts as an open-tubular reaction
detector. Inorganic polyphosphates!'?, polyphosphoric acids in phosphorus
smokes!3, phosphate and phosphonate (using two photometric detectors arranged
in parallel''# or in series!!> and the complexing abilities of ligands for metal
ions!!%117 have been determined with this dual configuration. A real on-line
HPLC-FIA coupling with two injection valves is only justified when there are specific
problems involved. Such is the case with the determination of phosphinate, phos-
phonate and phosphate!!®, in which a previous reagent (NaHSO;) is needed to ox-
idizeP! and P™ to PY, which yields the analytical reaction with the chromogenic re-

{a) s
TPLC IN\.;IECTION
PUMP LVE
ANALYTICAL
COLUMN
Rz
REACTOR
¢ Fla ! ! 5
R ™1 puMP | !
INJECTIGN - ———-—
VALVE CONFLUENCE W
POINT
. S
.b)
HPLC INJECTION
PUMP VALVE
— e ANALYTICAL
I TimER COLUMN
1 or
| MICROPROCESSOR]
R FIA T
PUMP INJECTION

VALVE REACTOR

Fig. 6. General arrangement of HPLC-FIA combination: (A) with FIA injection prior to the confluence
with the chromatographic eluate; (B) with injection of the chromatographic eluate. C = carrier; R =
reagent; S = sample; D = detector; W = waste.
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agent (Mo"'-MoV). As the sulphite solution tends to corrode stainless steel and to
disturb the flow-rate of the reciprocating pump, it is introduced with a loop-valve
injector to avoid contact of this reagent with the pump.

The use of two valves in a on-line HPLC-FIA coupled system has other al-
ternatives, as stated before. The chromatographic effluent fills the loop of a sampling
valve, which injects samples of it into the reagent stream (Fig. 6B) at regular intervals.
The automatic synchronous operation of the two valves is mandatory in this instance.
Mixtures of reducing sugars with photometric detection!!? and of amino acids with
amperometri¢ detection!2® have been resolved by means of this configuration.

CONCLUSION

Liquid-liquid extraction is by far the most frequently employed separation
technique in FIA systems, as can be seen in Fig. 7. About 20% of the papers pub-
lished in this context deal with the use of ion-exchange mini-columns. The impor-
tances of gas diffusion and dialysis are similar to each other but less than that of the
previous technique. Separation through membranes of molecules (dialysis), gases
(gass diffusion) and immiscible liquids (extraction) is the foundation of over 60% of
the continuous separation processes developed in FIA configurations.

In addition to the use of solid-solid reactive interfaces to develop certain ana-
Iytical methodologies, as stated in the Introduction, the main purpose of the incor-
poration of separation techniques in unsegmented flow systems is related to the im-
provement of sensitivity (pre-concentration), selectivity (sample clean-up, multiple
determinations) and, in some instances, to facilitate the analytical reaction and/or
detection, which would be impractical without a prior separation technique. Another
advantage over conventional batch non-chromatographic separation techniques is
the higher sampling rate achieved, which is of great relevance in routine determina-
tions.

It is interesting to note the decisive role played by kinetics in these continuous
separation processes. In general, physico-chemical equilibrium has not been attained
by the time the detection of the sample zone takes place, in contrast to the corre-
sponding batch and air-segmented continuous flow methods. On the one hand, one

LIQUID~LIQUID
EXTRACTION
43 %

ION EXCHANGE
18 °fs

GAS -~

DIFFUSION

HERS Miawvsis)™ .o

oA .
1%

Fig. 7. Percentage distribution of the continuous separation techniques associated with FIA systems.
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can assume that this should result in a decreased precision, but, in fact, the relative
standard deviations of both alternatives (non-kinetic—batch and air-segmented and
kinetic—-FIA) are virtually identical. On the other hand, a less evident but most
favourable phenomenon occurs: kinetic discrimination, which increases the selectivity
level when the process is performed in a continuous fashion!2!. Nevertheless, the
sensitivity is generally lower, unless it is designed as a pre-concentration procedure.

~ Despite the advantages, comparatively few FIA systems with continuous sep-
aration have been used so far, which can be attributed to the occurrence of a large
number of experimental factors that influence these dynamic systems, which is an
initial “‘barrier” to their development. Nevertheless, it suffices to test any of the above-
described configurations to become immediately aware of the few technical and
instrumental difficulties involved. It is logical to predict an increase in the number of
papers and applications in this context in the next few years, particularly in the field
of atomic spectroscopic techniques!?2,
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